
LODESTONE PACIFIC

"Finest In The Field"

4769 Wesley Dr., Anaheim, CA 92807 USA • Phone (714) 970-0900 • Fax (714) 970-0800 E-Mail: sales@lodestonepacific.com • www.lodestonepacific.com

Tuneable Shielded Coil Forms

High Q • Dependable Performance • Superior Temperature Stability • RoHS and REACH Compliant

tina@lodestonepacific.com +86 136-3166-2432

5mm Toko Sizes

7mm Toko Sizes

0mm Toko Sizes

+852 260 48222

From Fish Finder to Sidewinder

Variable Shielded Coil Forms for making Variable Inductors, IFT Coils,
Oscillators, RF Coils, Transformers, RF Filter Inductors, Narrow and
Broadband RF Transformers. AM and FM OSC Coils, RF Antenna

Coils, TV Receiver Coils, Transceiver Coils, and IFT Amplifiers.

High Q • Great Temperature Stability USA Military Qualified

- 8mm Assemblies Using Iron Powder Cores Lodestone L32, L33, L335 & L337 series
- 10.5 & 11mm Assemblies Using Iron Powder Cores Lodestone L42, L41, L43 series
- 11.5 & 14.5mm Assemblies Using Iron Powder Cores Lodestone L45, L57 series

Popular Millimeter (mm) Sizes

Toko Sizes and Configurations

- 5mm Assemblies Using Ferrite Cores Lodestone L20 series, Toko Equivalent: 5K Lodestone L28 series, Toko Equivalent: 5P
- 7mm Assemblies Using Ferrite Cores
 Lodestone L30 series, Toko Equivalent: 7KLL
 Lodestone L38 series, Toko Equivalent: 7P
- 10mm Assemblies Using Ferrite Cores Lodestone L40 series, Toko Equivalent: 10K Lodestone L48 series, Toko Equivalent: 10EZ

Custom Wound Inductors and Transformers

Popular Toko Sizes Wound to Your Specifications.

- 5mm, 7mm and 10mm
- Wound to the Customers L and Q Specifications
- Capacitors in Base to Tune Self-Resonant Frequency

+1(800) 694-8089

Cage Code OJWU1

All Catalog Parts ITAR Compliant

Proud Member

4

Search for REACH documents, view or download the certifications .pdf. www.lodestonepacific.com/reach.php

.www.lodestonepacific.com/coilwinders.php

Request a Quote

Request a quote and delivery and have it e-mailed to you same day.

www.lodestonepacific.com/quote.php

Performance of Variable Shielded Coil Forms

The quality and characteristics of the magnetic field generated in a variable inductor is determined by the quality and shape of the magnetic core materials, and by the characteristics of the winding. A cylindrical core in the center of a spring wound wire coil form will create a magnetic field with invisible lines of flux represented by Figure 1. The construction of the Shielded Coil Form traps and channels a majority of the magnetic lines of flux within a magnetic path-way created by the cup, increasing the efficiency and performance of the assembly as represented by Figure 2. The more complete the magnetic pathway along the magnetic lines of flux, the higher the inductance and the quality (Q) of the assembly. Some magnetic flux will escape the core material enclosure, but will be contained by

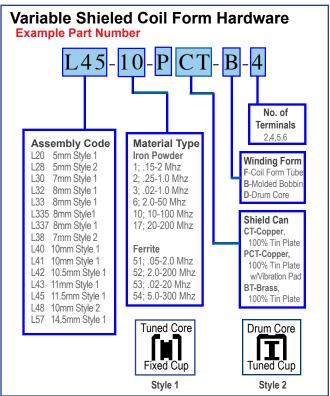
the copper or brass (tin plated) shield can that covers the assembly.

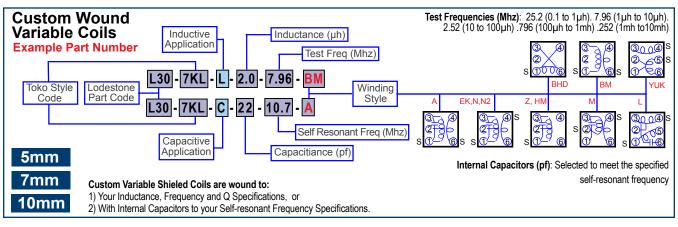
Figure 1

Variable Shieled Coil Forms are generally available with the magnetic core materials in two configurations: a threaded center core tuning within a winding form surrounded by a fixed cup as shown in Style 1, or a winding on a fixed drum core surrounded by a tunable cup as shown in Style 2. The optimum state for a tuned inductor is to have the desired inductance reached when the tuning core or cup fills the center core gap in the assembly and closes the magnetic field.

Figure 2

The Inductance of the Assembly: The inductance (L) is listed in μh (micro-henries) for 100 turns on the data sheets for each Shielded Coil Form (SCF) assembly. Starting with the 100 turn inductance, the number of turns of wire required for a desired inductance can be calculated from the following formula.


Required turns =
$$100\sqrt{\frac{\text{Desired L(h)}}{\text{L(h) for 100 turns}}}$$


The inductance of each assembly is fairly flat with increasing frequency until

after the peak of that assembly's Q. Above the peak Q frequency, apparent inductance will climb with frequency until the frequency when self resonance occurs. The inductances shown in this catalog are measured at frequencies below the Q curve's peak

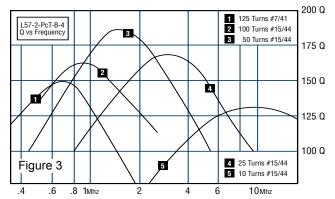
MIX NUMBER	COLOR CODE	MAGNETIC MATERIAL	MATERIAL PERMEABILITY	FREQUENCY RANGE	TEMPERATURE STABILITY
1	BLUE	CARBONYL C	20	.15-2.0 MHz	280 ppm/°C
2	RED	CARBONYL E	10	.25-10 MHz	95 ppm/°C
3	GRAY	CARBONYL HP	35	.02-1.0 MHz	370 ppm/°
3F	ORANGE	HP/FERRITE	80	.01-1.0 MHz	700 ppm/°C
6	YELLOW	CARBONYL SF	8.5	2.0-30 MHz	35 ppm/°C
10	BLACK	CARBONYL W	6.0	10-100 MHz	150 ppm/°C
17	LAVENDER	CARBONYL W	4.0	20-200 MHz	50 ppm/°C
50	ORANGE	FERRITE 50	125	.01-1.0 MHz	1500 ppm/°C
51	NONE	FERRITE 51	300	.05-2.0 MHz	1500 ppm/°C
52	NONE	FERRITE 52	60	2.0-200 MHz	1500 ppm/°C
53	NONE	FERRITE 53	44	.05-20 MHz	1500 ppm/°C
54	NONE	FERRITE 54	25	5.0-300 MHz	1500 ppm/°C

Fax (714) 970-0800

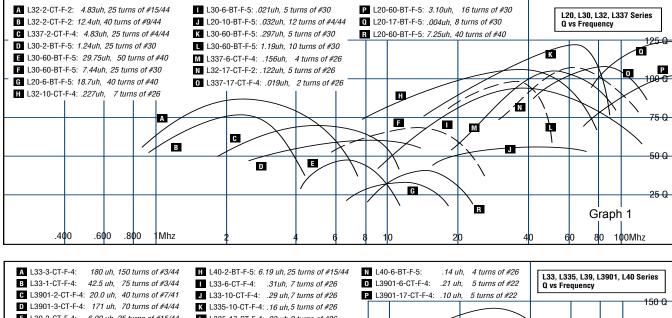
The Q of the Assembly

The optimum Q (quality or efficiency) of an assembly is found in balancing the fundamental physics of both the core material and the winding. The assembly's contribution to superior Q is found in the core materials shape, inductance and frequency sensitivity. The winding's contribution is maximized by minimizing frequency specific wire losses in the winding. The key to optimising the Q of the assembly is selecting the proper core material, wire and winding characteristics, for a particular frequency .

Core Considerations


The iron powder and ferrite materials used in Lodestone Pacific's Shielded Coil Forms are formulated for optimum Q within a specific frequency range as shown by the table on Page 3. The Q vs. frequency curves on these pages show the highest Q's achievable for a particular core material and frequency. The shape and magnitude of these curves can be characterized by the following formula:

Where f is frequency in Mhz, L is inductance in µh 1and R is the effective series resistance due to both copper and core loss in ohms. While the frequency and inductance is known or calculated, the frequency sensitive copper and core material losses are often difficult to calculate. In addition, variations in core material density and winding characteristics often make the Q experienced in actual applications differ from theory.


The Q vs frequency curves included in this catalog are plotted on a semi-log axis and were derived from actual testing of the variable assemblies in a parallel resonant circuit and reflect the expected Q readings with

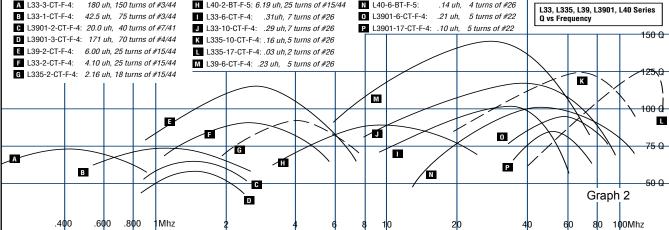
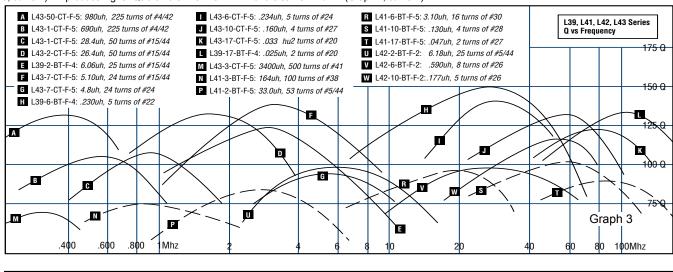
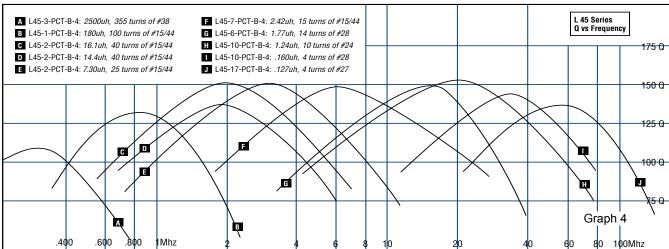

a specific inductance and winding. As the frequency is varied, the readings will trace a humped curve identifying the optimum inductance-frequency balance that produces the highest Q. Increasing inductance by adding turns of wire or tuning the core towards the maximum inductance position will create a new Q curve with a peak that will be shifted down in frequency. Conversely, reducing inductance by decreasing turns or de-tuning the assembly will shift the Q curve peak towards a higher frequency.

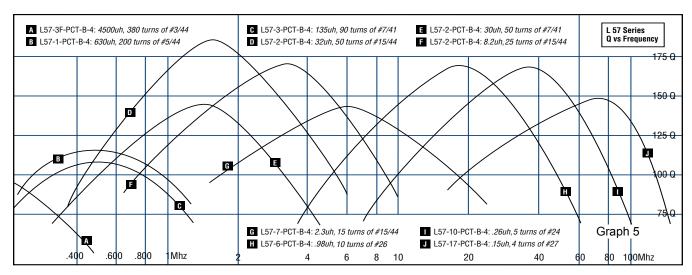
Figure 3 shows the L57-2-PCT-B-4 assembly wound with a decreasing numbers of turns. The family of Q curves show the trend towards higher

frequency Q curves as you reduce inductance by reducing turns. It also shows that the maximum value of each Q curve will diminish as the curve peaks move to the extremes of their recommended frequency ranges. There is an optimum frequency and inductance for a given assembly where the

Fax (714) 970-0800


"peak of the peaks" will occur (at 1.5 Mhz in Figure 3). This is why applications requiring high Q are best engineered with the inductive portion of the tuned circuit optimised first, and the capacitor specified to support that optimum Q.


Each core material formulation will produce similar families of curves within their optimum frequency ranges. The complete family of Q curves for the L57 series on Graph 5 show that mix formulations 6 exhibits better Q characteristics as the frequency moves above formulation 2's optimum frequency range.


The amount of core material in the assembly will also improve Q. As an example, the L57-2-CT-B-4 wound with 25 turns of 15/44 Litz wire (Graph 5, curve F) will produce higher Qs than the L45-2-CT-B-4 with the same wind-

ing (Graph 4, curve E). This is due to 28% more iron powder in the larger L57 assembly. Comparing the L337-2-CT-B-4 (Graph 1, curve C), L33-2-CT-F-4 (Graph 2, curve F) and L45-2-CT-B-4 (Graph 4, curve E) shows the relative Q of these assemblies with 25 turns of 15/44 Litz wire at approximately 2 Mhz.

In comparing these curves it can be seen that increasing the amount of core material also shifts the "peak of peaks" down in frequency. As an example, the L57-2-CT B-4 (4.45 grams of core material) with 25 turns of 15/44 peaks at 1.5 Mhz (Graph 5, curve F), while the smaller L33-2-CT-B-4 with the same winding and only .601 grams of core material peaks at 2.3 Mhz. (Graph 2, curve F).

5

WINDING AFFECTS ON Q

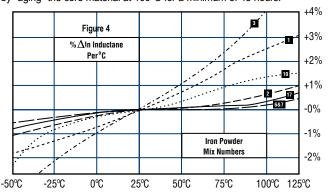
The type and size of the wire used in the winding is also frequency sensitive. This is due to the losses that result in the electronic and magnetic fields emitted from the wire in the winding. As frequency is increased from 100 Khz to 1Mhz, the resistive eddie-current losses increase and the "skin effect" becomes significant. It is possible to minimize the "skin effect" by dividing the conductor into a bundle of interwoven insulated strands called Litzendraht or Litz wire. Depending on the frequency, the strand diameter is chosen so that the skin effect in the individual strands is negligible.

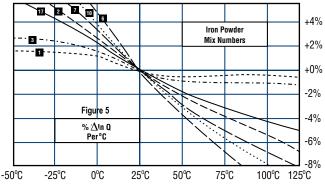
Litz wire is described as 7/41 (7 strands of 41 AWG), or 15/44 (15 strands of 44 AWG.) and will tend towards larger bundles of smaller strands as frequency is increased. Above 1 Mhz, the advantages of reduced resistance using Litz wire are nullified by the disadvantages of increased capacitive losses created by the stranding.

As the capacitance of adjacent turns as well as the capacitance from the winding to the core becomes significant, stranded wire should be abandoned in favor of solid wire. Thus higher frequency windings will tend towards fewer well spaced turns of larger diameter enamel coated magnetic wire.

The positive influence of Litz wire is demonstrated in the L43 series Q curves on Graph 3. With the same number of turns and inductance, the L43-7-CT-F-5 (Curve F) with Litz wire has superior Q to the L43-7-CT-F-5 (Curve G) wound with solid wire at approximately 4 Mhz. It is also evident that L57-2-PCT-B-4 with 50 turns of 15/44 (Curve D) is a more efficient Litz winding than 50 turns of 7/41 on the L57-2-PCT-B-4 (Curve E) tuned to $30\mu h$ at 1.5 Mhz. As the capacitive effects begin to dominate the Litz wire becomes a liability. The exact frequency is dependent on the application but the practical transition is from 1 to 10 Mhz.

The winding table below shows the number of turns of Litz and magnetic wire of different gauges that will fit in each of the Shielded Coil Form's winding area. These turns estimates are for indication only. The actual maximum number of turns will depend on insulation thickness and the winding technique.

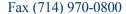

TEMPERATURE STABILITY

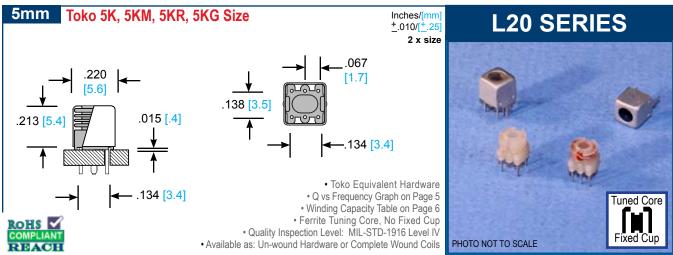

An important characteristic of iron powder core materials is the outstanding temperature stability. The temperature stability information for each material is listed in parts-per-million-per degree Celsius (ppm/°C). As an example, the inductance of a 100ppm/°C material will change by 1% over a temperature change of 100 °C. Figures 4 and 5 plot the temperature stability for iron powder materials as a percentage change in inductance and Q.

The iron powder core materials have excellent temperature stability from -65°C (-150°F) up to 125°C (257°F). Ferrite materials are more sensitive to temperature and will exhibit changes in inductance and Q from 5 to 10 times greater than iron powder over the same temperature range.

In an iron powder core, inductance will increase gradually as the core materials move from 25°C to over 100°C. With continuous operation above 100°C, inductance and Q will begin to degrade with time. The extent of these changes are dependent on time, temperature, and frequency. Iron powder cores tolerate temperatures down to -65°C with no permanent effects.

Extended periods of elevated temperature will result in a permanent shift in inductance and Q when the assembly is returned to ambient. For temperature sensitive applications up to 100°C, this shift can be stabilized by "aging" the core material at 100°C for a minimum of 48 hours.

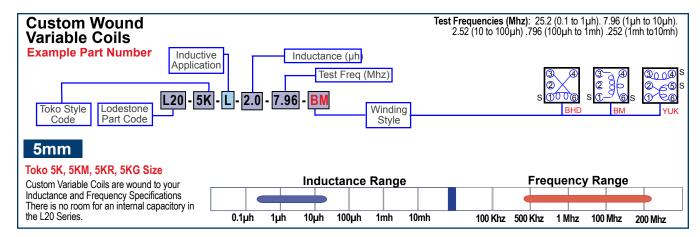


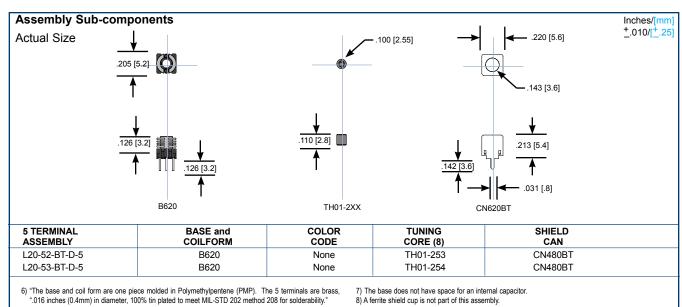

These graphs show relative stability for the core materials alone and should be used only as an indication of the temperature stability of the wound assembly.

SHIELDED COIL FORM WINDING TABLE

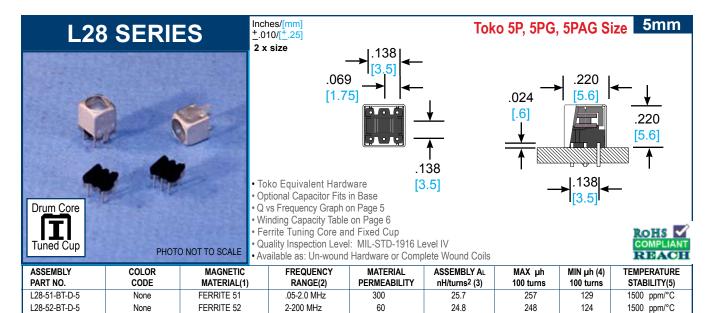
	<u> </u>				I .									_	_				_					
WIRE SIZE AWG	2	0	2	2	2	4	2	6	2	8	3	0	3	2	3	4	3	6	3	8	4	0	4	2
WIRE SIZE LITZ	100	/43	60/	43	40/	43	10/	40	10/	42	15/	45	9/4	45	6/-	45	5/-	47	4/-	48				
Single Layer Full Winding	S	F	S	F	S	F	S	F	S	F	S	F	S	F	S	F	S	F	S	F	S	F	S	F
L20											4	4	4	8	4	8	4	32	4	32	4	40	4	112
L28							2	6	4	8	5	15	7	21	9	36	11	66	14	98	18	180	23	270
L30									5	10	5	10	5	20	5	40	5	60	5	120	5	200	5	300
L32							8	15	10	19	13	25	16	58	21	78	27	147	34	244	43	385	55	594
L33							5	5	5	10	5	10	5	20	5	40	5	60	5	120	5	200	5	300
L333/L335							8	15	10	19	13	25	17	62	22	82	27	147	34	244	45	400	55	606
L337							8	15	10	19	13	25	16	58	21	78	27	147	34	244	43	385	55	594
L38							5	25	6	42	8	70	10	110	13	180	16	280	20	440	26	750	31	1100
L40											4	24	4	28	4	36	4	48	4	55	4	72	4	96
L41							4	8	4	8	4	16	4	16	4	24	4	32	4	40	4	55	4	64
L42	4	4	5	9	7	22	9	30	12	57	15	75	19	124	24	222	30	345	38	531	50	924	62	1425
L43	4	8	6	12	8	16	10	20	13	52	17	102	21	126	27	216	34	404	42	588	55	990	69	1656
L45	5	8	6	12	8	15	10	19	13	25	17	62	21	78	27	147	34	244	43	385	55	679	70	1107
L48							4	20	6	42	7	63	9	110	12	165	15	270	19	418	25	725	31	1100
L57	5	10	6	24	8	32	10	60	13	104	17	170	21	252	27	432	34	680	43	1032	55	1760	70	2800

E-Mail: sales@lodestonepacific.com • www.lodestonepacific.com

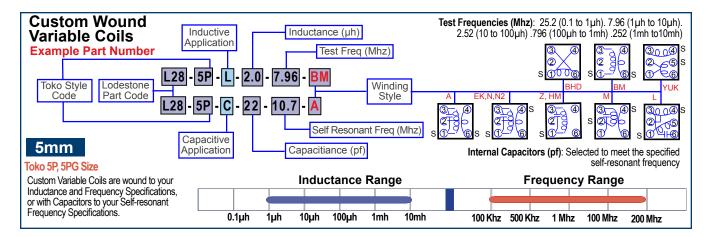


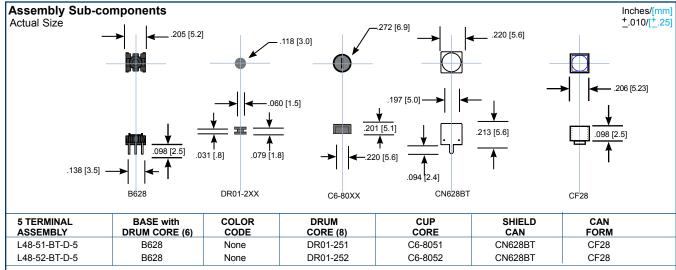


ASSEMBLY PART NO.	COLOR CODE	MAGNETIC Material(1)	FREQUENCY RANGE(2)	MATERIAL PERMEABILITY	ASSEMBLY AL nH/turns ² (3)	MAX µh 100 turns	MIN µh (4) 100 turns	TEMPERATURE STABILITY(5)
L20-53-BT-D-5	None	FERRITE 51	.05-2.0 MHz	300	.41	41	28	1500 ppm/°C
L20-54-BT-D-5	None	FERRITE 52	2-150 MHz	60	.42	42	30	1500 ppm/°C


- 1) The ferrite materials are used in the tuning core. This series does not offer a cup core.
 2) This represents the frequency range for Q optimization in tuned or resonant circuits. The inductive properties
- This represents the frequency range for Q optimization in tuned or resonant circuits. The inductive properties
 of the material is effective over a considerably wider frequency range.
- 3) Nanohenries (10⁻⁹ Henries) per turn squared.

- 4) The minimum inductance is measured in microhenies (10⁻⁶ Henries) per 100 turns with the tuning core tuned out of the winding area but still a part of the assembly.
- 5) The temperature stability is of the magnetic material, measured in parts per million per degree Celsius (ppm/^OC) on a toroidal core and winding. This is only an indication of the temperature stability for a complete wound assembly.

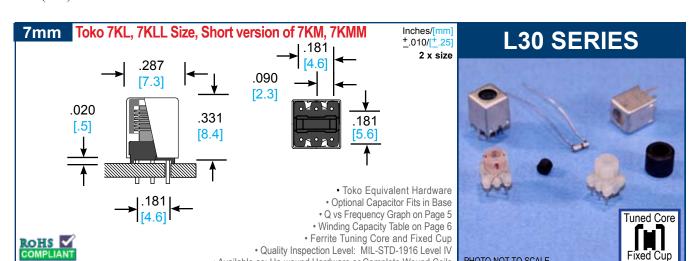

Fax (714) 970-0800



1) The ferrite materials are used in the drum core and cup core.

- This represents the frequency range for Q optimization in tuned or resonant circuits. The inductive properties
 of the material is effective over a considerably wider frequency range.
- Nanohenries (10⁻⁹ Henries) per turn squared.

- 4) The minimum inductance is measured in microhenries (10°6 Henries) per 100 turns with the tuning core tuned out of the winding area but still a part of the assembly.
 5) The temperature stability is of the magnetic material, measured in parts per million per degree
- 5) The temperature stability is of the magnetic material, measured in parts per million per degree Celsius (ppm/OC) on a toroidal core and winding. This is only an indication of the temperature stability for a complete wound assembly.



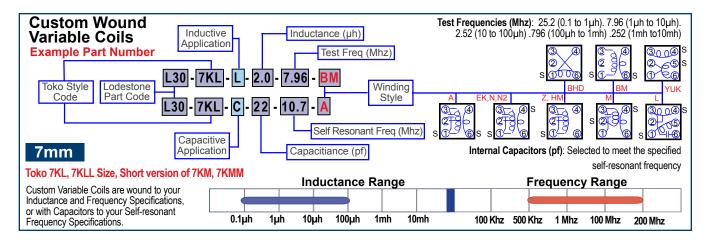
6) "The base is molded in a phenolic thermoset. The 5 terminals are brass, ".027 inches (0.7mm) in diameter, 100 % tin plated to meet MIL-STD 202 method 208 for solderability."
7)The ferrite drum core is attached to the thermoset base.

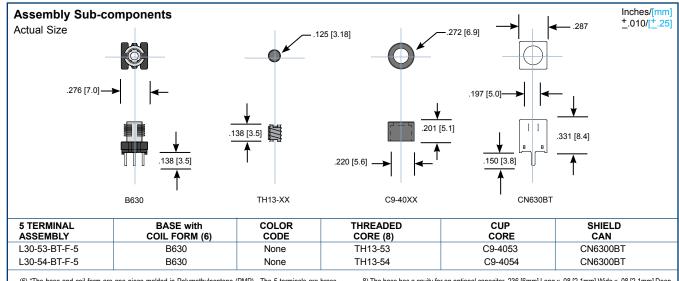
8) Threaded cup matches the interal threads in the Cup Form 9) The base has a cavity for an optional capacitor .185 [4.7] Long x .087 [2.2] Wide x .079 [2.0] Deep. Capacitors are not included.

SHIELDED COIL FORMS

ASSEMBLY PART NO (Un-Wound)	. COLOR CODE	MAGNETIC MATERIAL(1)	FREQUENCY RANGE(2)	MATERIAL PERMEABILITY	ASSEMBLY AL nH/turns ² (3)	MAX µh 100 turns	MIN µh (4) 100 turns	TEMPERATURE STABILITY(5)
L30-53-BT-F-5	None	FERRITE 53	.05-2.0 MHz	44	10.4	104	44	1500 ppm/°C
L30-54-BT-F-5	None	FERRITE 54	2-200 MHz	25	14.8	148	71	1500 ppm/°C

· Available as: Un-wound Hardware or Complete Wound Coils


- 1) The ferrite materials are used in the tuning core and cup core.
- 2) This represents the frequency range for Q optimization in tuned or resonant circuits. The inductive properties of the material is effective over a considerably wider frequency range.
- 3) Nanohenries (10⁻⁹ Henries) per turn squared.


4) The minimum inductance is measured in microhenries (10⁻⁶ Henries) per 100 turns with the tuning core tuned out of the winding area but still a part of the assembly.

5) The temperature stability is of the magnetic material, measured in parts per million per degree

PHOTO NOT TO SCALE

Celsius (ppm/OC) on a toroidal core and winding. This is only an indication of the temperature stability for a complete wound assembly.

(6) "The base and coil form are one piece molded in Polymethylpentene (PMP). The 5 terminals are brass .02 inches (0.5mm) in diameter,100% tin plated to meet MIL-STD 202 method 208 for solderability.

7) The ferrite tuning cores is 3.3mm metric, shallow thread.

8) The base has a cavity for an optional capacitor .236 [6mm] Long x .08 [2.1mm] Wide x .08 [2.1mm] Deep. Capacitors are not included

9

Fax (714) 970-0800

8mm Inches/[mm] ±.010/[±.25] 2 x size (1) .310 .233 5.9 ③ **(4)** CAN TAB .030 .320 **FOLDOVER** 8.1 .76 380 9.7 · Stable Inductance


- · Superior Temperature Stability
- Q vs Frequency Graph on Page 5
- · Winding Capacity Table on Page 6
- · Available as: Un-wound Hardware Only
- Quality Inspection Level: MIL-STD-1916 Level IV

ROHS	\checkmark
COMPLIA	ANT
REAC	н

ASSEMBLY	COLOR	MAGNETIC	FREQUENCY	MATERIAL	ASSEMBLY AL	MAX µh	MIN µh (4)	TEMPERATURE
PART NO.	CODE	MATERIAL(1)	RANGE (2)	PERMEABILITY	nH/turns ² (3)	100 turns	100 turns	STABILITY(5)
L32-2-CT-F-4	RED	CARBONYL E	.25-10 MHZ	10.0	6.8	68	45	95 ppm/°C
L32-3-CT-F-4	GREY	CARBONYL HP	.02-1.0 MHZ	35.0	7.8	78	46	370 ppm/°C
L32-6-CT-F-4	YELLOW	CARBONYL SF	2.0-50 MHZ	8.5	6.1	61	38	35 ppm/°C
L32-10-CT-F-4	BLACK	CARBONYL W	10-100 MHZ	6.0	5.7	57	37	150 ppm/°C
L32-17-CT-F-4	LAVENDER	CARBONYL	20-200 MHZ	4.0	5.2	52	37	50 ppm/°C

- 1) The iron powder or ferrite materials are used in a portion of the base, the tuning core and cup core.
 2) This represents the frequency range for Q optimization in tuned or resonant circuits. The inductive
- properties of the material is effective over a considerably wider frequency range.
- 3) Nanohenries (10⁻⁹ Henries) per turn squared.

- 4) The minimum inductance is measured in microhenries (10⁻⁶ Henries) per 100 turns with the tuning core tuned out of the winding area but still a part of the assembly.
- 5) The temperature stability is of the magnetic material, measured in parts per million per degree Celsius (ppm/OC) on a toroidal core and winding. This is only an indication of the temperature

6) Complanearity of the two terminal version is not an issue due to three contact points. The four terminal version's coplanearity will depend on the success of the can tab's (fifth) contact point.

7) The base is molded in thermoset Diallyl Phthalate (DAP). Two terminal (positions 3 &4) and four

B532

B532

B532

B532-w/CF132

B532-w/CF132

B532-w/CF132

- terminal (positions 1,2 3 &4) are available in Alloy 42, 90/10 tin plated to MIL-STD 202, 208 for solderability. The CF117 coilform is a glass reinforced polyester tube with 8-32 internal threads.
- 8) The optional PB132 snap in bobbin is self threading polypropylene. To order, substitute "P" for "F" in the assembly part number.

TH12-306

TH12-310

TH12-317

C9-3306

C9-3310

C9-3317

9) The tuning core is a 6-32 shallow thread coated with Teflon.

YELLOW

BLACK

LAVENDER

10) The tab on the shield can bends under the base, holding the shield can in place and creating the surface mount connection to the circuit board.

B532-w/PB132

B532-w/PB132

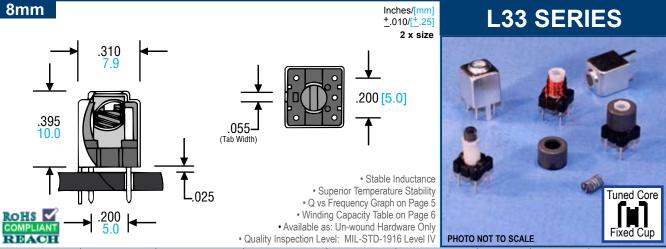
B532-w/PB132

PB132

PB132

PB132

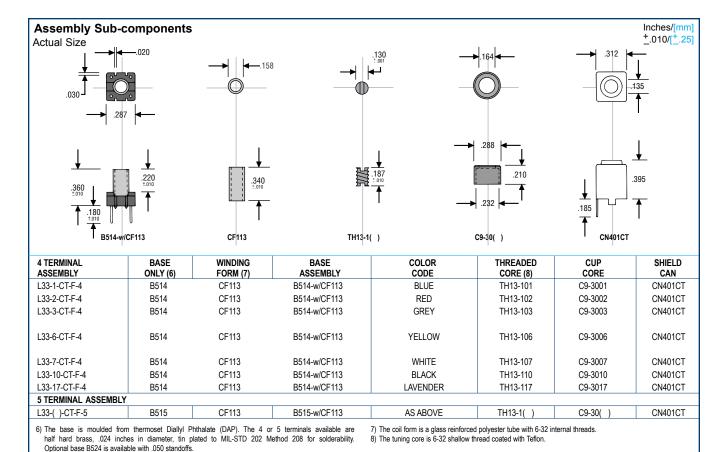
CN432CT


CN432CT

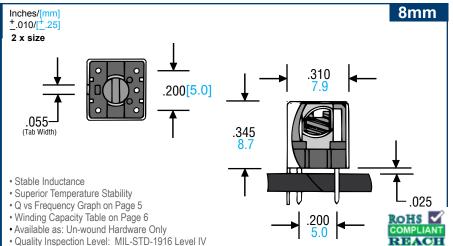
CN432CT

L32-6-CT-F-4

L32-10-CT-F-4

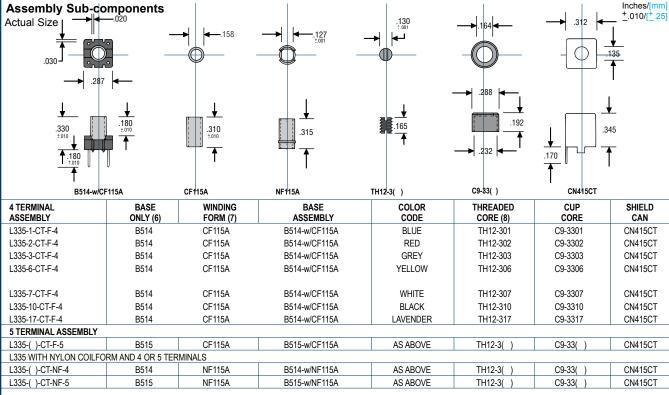

L32-17-CT-F-4

			, ,					
ASSEMBLY PART NO.	COLOR CODE	MAGNETIC Material(1)	FREQUENCY RANGE (2)	MATERIAL PERMEABILITY	ASSEMBLY AL nH/turn ² (3)	MAX µh 100 turns	MIN µh (4) 100 turns	TEMPERATURE STABILITY(5)
L33-1-CT-F-4	BLUE	CARBONYL C	.15-2.0 MHZ	20.0	7.6	76	45	280 ppm/°C
L33-2-CT-F-4	RED	CARBONYL E	.25-10 MHZ	10.0	6.8	68	45	95 ppm/°C
L33-3-CT-F-4	GREY	CARBONYL HP	.02-1.0 MHZ	35.0	8.0	80	46	370 ppm/°C
L33-6-CT-F-4	YELLOW	CARBONYL SF	2.0-50 MHZ	8.5	6.0	60	38	35 ppm/°C
L33-7-CT-F-4	WHITE	CARBONYL TH	1.0-20 MHZ	9.0	6.4	64	40	30 ppm/°C
L33-10-CT-F-4	BLACK	CARBONYL W	10-100MHZ	6.0	5.4	54	37	150 ppm/°C
L33-17-CT-F-4	LAVENDER	CARBONYL	20-200MHZ	4.0	4.8	48	37	50 ppm/°C

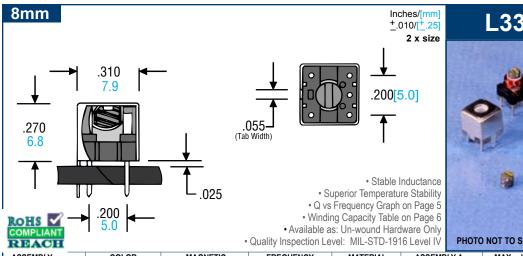

- 1) The iron powder or ferrite materials are used in the tuning core and cup core.
- 2) This represents the frequency range for Q optimization in tuned or resonant circuits. The inductive properties of the material is effective over a considerably wider frequency range.
- 3) Nanohenries (10⁻⁹ Henries) per turn squared.

- 4) The minimum inductance is measured in microhenries (10⁻⁶ Henries) per 100 turns with the tuning core tuned out of the winding area but still a part of the assembly.
 5) The temperature stability is of the magnetic material, measured in parts per million per degree
- 5) The temperature stability is of the magnetic material, measured in parts per million per degree Celsius (ppm/°C) on a toroidal core and winding. This is only an indication of the temperature stability for a complete wound assembly.

E-Mail: sales@lodestonepacific.com • www.lodestonepacific.com



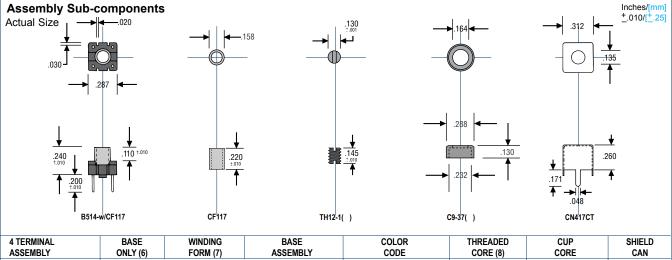
ASSEMBLY PART NO.	COLOR CODE	MAGNETIC Material(1)	FREQUENCY RANGE (2)	MATERIAL PERMEABILITY	ASSEMBLY AL nH/turns ² (3)	MAX µh 100 turns	MIN µh (4) 100 turns	TEMPERATURE STABILITY(5)
L335-1-CT-F-4	BLUE	CARBONYL C	.15-2.0 MHz	20.0	7.4	74	45	280 ppm/°C
L335-2-CT-F-4	RED	CARBONYL E	.25-10 MHz	10.0	6.8	68	45	95 ppm/°C
L335-3-CT-F-4	GREY	CARBONYL HP	.02-1.0 MHz	35.0	7.8	78	46	370 ppm/°C
L335-6-CT-F-4	YELLOW	CARBONYL SF	2.0-50 MHz	8.5	6.1	61	38	35 ppm/°C
L335-7-CT-F-4	WHITE	CARBONYL TH	1.0-20 MHz	9.0	6.4	64	40	30 ppm/°C
L335-10-CT-F-4	BLACK	CARBONYL W	10-100 MHz	6.0	5.7	57	37	150 ppm/°C
L335-17-CT-F-4	LAVENDER	CARBONYL	20-200 MHz	4.0	5.2	52	37	50 ppm/°C


- 1) The iron powder materials are used in the tuning core and cup core.
- 2) This represents the frequency range for Q optimization in tuned or resonant circuits. The inductive properties of the material is effective over a considerably wider frequency range.
- 3) Nanohenries (10⁻⁹ Henries) per turn squared.

- 4) The minimum inductance is measured in microhennes (10⁻⁶ Hennes) per 100 turns with the tuning core tuned out of the winding area but still a part of the assembly.
- 5) The temperature stability is of the magnetic material, measured in parts per million per degree Celsius (ppm/°C) on a toroidal core and winding. This is only an indication of the temperature stability for a complete wound assembly.

- 6) The base is moulded from thermoset Diallyl Phthalate (DAP). The 4 or 5 terminals available are half hard brass, .024 inches in diameter, tin plated to MIL-STD 202 Method 208 for solderability. Optional base B524 is available with .050 standoffs.
- 7) The CF115A coil form is a glass reinforced polyester tube with 6-32 internal threads. The NF coil form is self threading nylon 6/6.
- 8) The tuning core is 6-32 shallow thread coated with Teflon.

SHIELDED COIL FORMS Fax (714) 970-0800

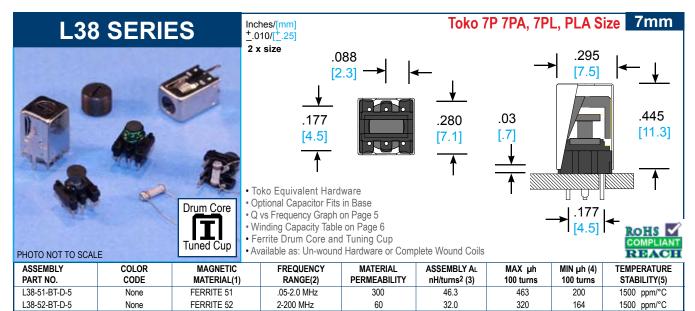

L337 SER	IES
9	
	*
9	
	Tuned Core
PHOTO NOT TO SCALE	Fixed Cup

ASSEMBLY PART NO.	COLOR CODE	MAGNETIC MATERIAL(1)	FREQUENCY RANGE (2)	MATERIAL PERMEABILITY	ASSEMBLY AL nH/turn ² (3)	MAX µh 100 turns	MIN µh (4) 100 turns	TEMPERATURE STABILITY(5)
L337-1-CT-F-4	BLUE	CARBONYL C	.15-2.0 MHZ	20.0	7.6	76	45	280 ppm/°C
L337-2-CT-F-4	RED	CARBONYL E	.25-10 MHZ	10.0	6.8	68	45	95 ppm/°C
L337-3-CT-F-4	GREY	CARBONYL HP	.02-1.0 MHZ	35.0	8.0	80	46	370 ppm/°C
L337-6-CT-F-4	YELLOW	CARBONYL SF	2.0-50 MHZ	8.5	6.0	60	38	35 ppm/°C
L337-7-CT-F-4	WHITE	CARBONYL TH	1.0-20 MHZ	9.0	6.4	64	40	30 ppm/°C
L337-10-CT-F-4	BLACK	CARBONYL W	10-100MHZ	6.0	5.4	54	37	150 ppm/°C
L337-17-CT-F-4	LAVENDER	CARBONYL	20-200MHZ	4.0	4.8	48	37	50 ppm/°C

- 1) The iron powder or ferrite materials are used in the tuning core and cup core.
- 2) This represents the frequency range for Q optimization in tuned or resonant circuits. The inductive properties of the material is effective over a considerably wider frequency range.
- 3) Nanohenries (10⁻⁹ Henries) per turn squared.

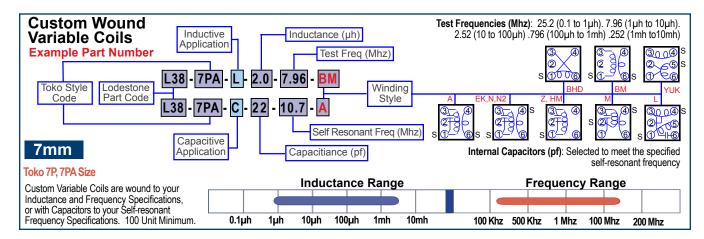
- 4) The minimum inductance is measured in microhenries (10^{-6} Henries) per 100 turns with the tuning core tuned out of the winding area but still a part of the assembly.

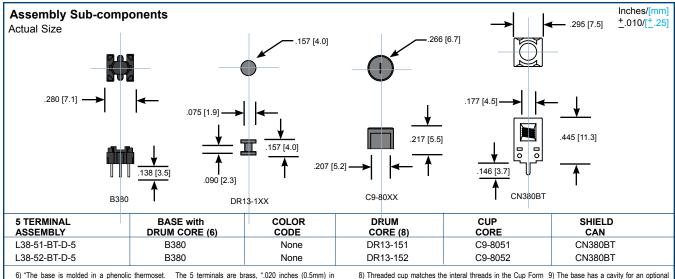
 5) The temperature stability is of the magnetic material, measured in parts per million per degree
- Celsius (ppm/°C) on a toroidal core and winding. This is only an indication of the temperature stability for a complete wound assembly.


4 TERMINAL ASSEMBLY	BASE ONLY (6)	WINDING FORM (7)	BASE ASSEMBLY	COLOR CODE	THREADED CORE (8)	CUP CORE	SHIELD CAN
L337-1-CT-F-4	B514	CF117	B514-w/CF117	BLUE	TH12-101	C9-3701	CN417CT
L337-2-CT-F-4	B514	CF117	B514-w/CF117	RED	TH12-102	C9-3702	CN417CT
L337-3-CT-F-4	B514	CF117	B514-w/CF117	GREY	TH12-103	C9-3703	CN417CT
L337-6-CT-F-4	B514	CF117	B514-w/CF117	GREY/ORANGE	TH12-106	C9-3706	CN417CT
L337-7-CT-F-4	B514	CF117	B514-w/CF117	YELLOW	TH12-107	C9-3707	CN417CT
L337-10-CT-F-4	B514	CF117	B514-w/CF117	WHITE	TH12-110	C9-3710	CN417CT
L337-17-CT-F-4	B514	CF117	B514-w/CF117	BLACK	TH12-117	C9-3717	CN417CT
5 TERMINAL ASSEMB	LY						
L337-()-CT-F-5	B515	CF117	B515-w/CF117	AS ABOVE	TH12-1()	C9-37()	CN417CT

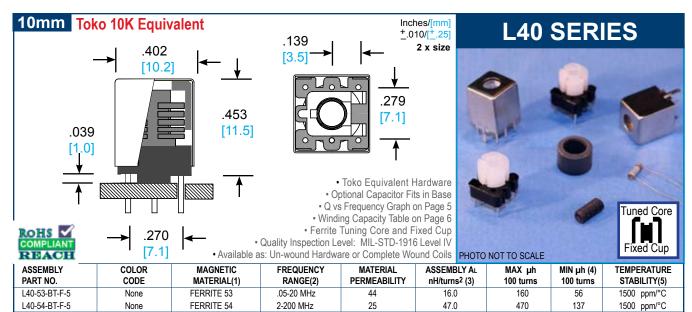
⁶⁾ The base is moulded from thermoset Diallyl Phthalate (DAP). The 4 or 5 terminals available are half hard brass, .024 inches in diameter, tin plated to MIL-STD 202 Method 208 for solderability. Optional base B524 is available with .050 standoffs.

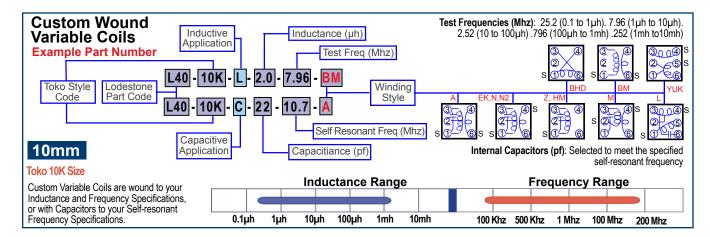
⁷⁾ The coil form is a glass reinforced polyester tube with 6-32 internal threads.

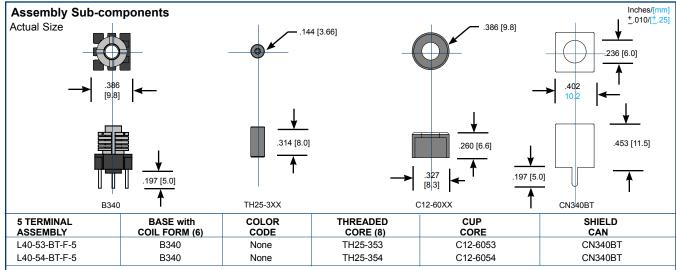

⁸⁾ The tuning core is 6-32 shallow thread coated with Teflon.


Fax (714) 970-0800

- 1) The ferrite materials are used in the tuning cup and drum core.
- 2) This represents the frequency range for Q optimization in tuned or resonant circuits. The inductive properties of the material is effective over a considerably wider frequency range.
- 3) Nanohenries (10⁻⁹ Henries) per turn squared.

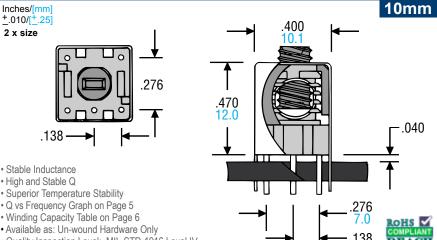

- 4) The minimum inductance is measured in microhenries (10⁻⁶ Henries) per 100 turns with the tuning core tuned out of the winding area but still a part of the assembly.
 5) The temperature stability is of the magnetic material, measured in parts per million per degree
- 5) The temperature stability is of the magnetic material, measured in parts per million per degree Celsius (ppm/OC) on a toroidal core and winding. This is only an indication of the temperature stability for a complete wound assembly.


6) "The base is molded in a phenolic thermoset. The 5 terminals are brass, ".020 inches (0.5mm) in diameter, 100% tin plated to meet MIL-STD 202 method 208 for solderability." 7) The ferrite drum core is attached to the thermoset base. 8) Threaded cup matches the interal threads in the Cup Form 9) The base has a cavity for an options capacitor ..225 [5.8mm] Long x .095 [2.4mm] Wide x .110 [2.8mm] Deep. Capacitors are not included.


Fax (714) 970-0800

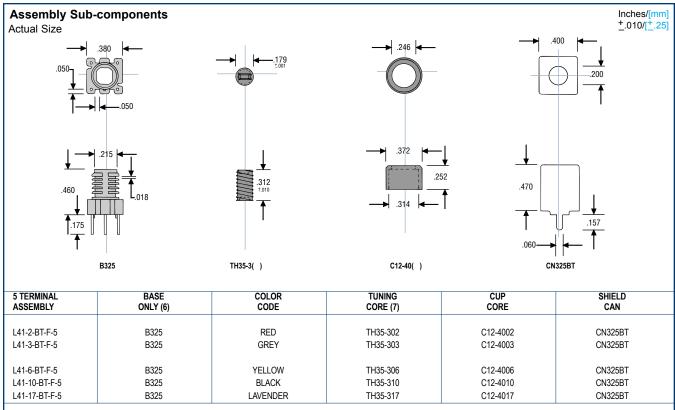
- The ferrite materials are used in the tuning core and cup core.
- 2) This represents the frequency range for Q optimization in tuned or resonant circuits. The inductive properties of the material is effective over a considerably wider frequency range.
- 3) Nanohenries (10⁻⁹ Henries) per turn squared.

- 4) The minimum inductance is measured in microhenries (10⁻⁶ Henries) per 100 turns with the tuning core tuned out of the winding area but still a part of the assembly.
 5) The temperature stability is of the magnetic material, measured in parts per million per degree
- 5) The temperature stability is of the magnetic material, measured in parts per million per degree Celsius (ppml^OC) on a toroidal core and winding. This is only an indication of the temperature stability for a complete wound assembly.

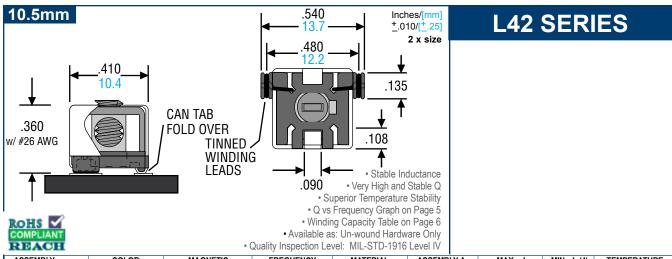


^{6) &}quot;The base is molded in a phenolic thermoset. The attached coilform is molded in polypropylene. The 5 terminals are brass, ".027 inches (0.7mm) in diameter, 100% tin plated to meet MIL-STD 202 method 208 for solderability."

7) The base has a cavity for an optional capacitor .225 [5.7mm] Long x .062 [1.6mm] Wide x .107 [2.7mm] Deep. Capacitors are not included.

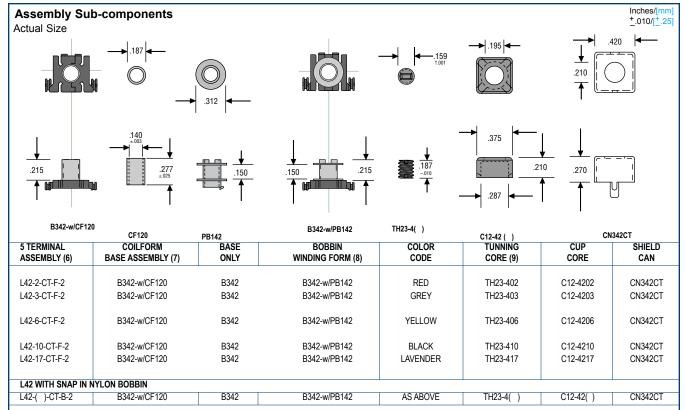

Fax (714) 970-0800

ASSEMBLY	COLOR	MAGNETIC	FREQUENCY	MATERIAL PERMEABILITY	ASSEMBLY AL	MAX µh	MIN µh (4)	TEMPERATURE
PART NO.	CODE	MATERIAL(1)	RANGE(2)		nH/turns2 (3)	100 turns	100 turns	STABILITY(5)
L41-2-BT-F-5	RED	CARBONYL E	.25-10 MHZ	10.0	11.5	115	64	95 ppm/°C
L41-3-BT-F-5	GREY	CARBONYL HP	.02-1.0 MHZ	35.0	15	150	66	370 ppm/°C
L41-6-BT-F-5	YELLOW	CARBONYL SF	2.0-50 MHZ	8.5	10.5	105	63	35 ppm/°C
L41-10-BT-F-5	BLACK	CARBONYL W	10-100 MHZ	6.0	8	80	62	150 ppm/°C
L41-17-BT-F-5	LAVENDER	CARBONYL	20-200 MHZ	4	6	60	50	50 ppm/°C


- 1) The iron powder or ferrite materials are used in the tuning core and cup core.
- 2) This represents the frequency range for Q optimization in tuned or resonant circuits. The inductive properties of the material is effective over a considerably wider frequency range.
- 3) Nanohenries (10⁻⁹ Henries) per turn squared.
- 4) The minimum inductance is measured in microhenries (10⁻⁶ Henries) per 100 turns with the tuning core tuned
- out of the winding area but still a part of the assembly.
- 5) The temperature stability is of the magnetic material, measured in parts per million per degree Celsius (ppm/°C) on a toroidal core and winding. This is only an indication of the temperature stability for a complete wound assembly.

⁶⁾ The base and self threading segregated coil form are one piece, moulded from nylon 6/6 and will require careful heat management. The 5 terminals available are half hard brass, .025 inches in diameter, tin plated to MIL-STD 202 Method 208 for solderability.

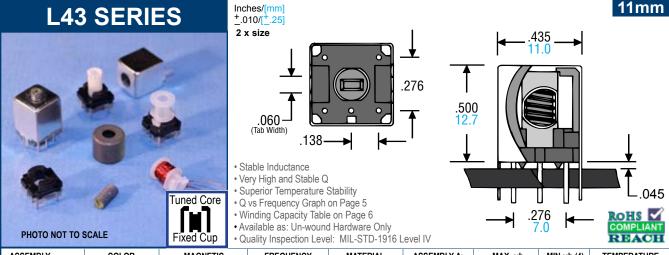
⁷⁾ The tuning core is 10-32 shallow thread coated with Teflon.


SHIELDED COIL FORMS Fax (714) 970-0800

ASSEMBLY	COLOR	MAGNETIC	FREQUENCY	MATERIAL	ASSEMBLY AL	MAX µh	MIN µh (4)	TEMPERATURE
PART NO.	CODE	Material(1)	RANGE(2)	PERMEABILITY	nH/turns ² (3)	100 turns	100 turns	STABILITY(5)
L42-2-CT-F-2	RED	CARBONYL E	.25-1- MHZ	10.0	12.5	125	52	95 ppm/°C
L42-3-CT-F-2	GREY	CARBONYL HP	.02-1.0 MHZ	35.0	20.4	204	64	370 ppm/°C
L42-6-CT-F-2	YELLOW	CARBONYL E	2.0-50 MHZ	8.5	11.5	115	47	35 ppm/°C
L42-10-CT-F-2	BLACK	CARBONYL E	10-100 MHZ	6.0	10	100	46	150 ppm/°C
L42-17-CT-F-2	LAVENDER	CARBONYL E	20-200 MHZ	4.0	6.7	67	45	50 ppm/°C

- 1) The iron powder or ferrite materials are used in the tuning core and cup core.
- 2) This represents the frequency range for Q optimization in tuned or resonant circuits. The inductive properties of the material is effective over a considerably wider frequency range.
- 3) Nanohenries (10⁻⁹ Henries) per turn squared

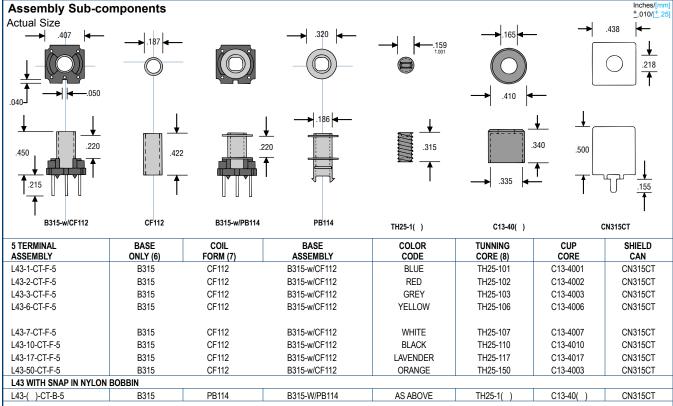
- 4) The minimum inductance is measured in microhenries (10⁻⁶ Henries) per 100 turns with the tuning core tuned out of the winding area but still a part of the assembly.
- 5) The temperature stability is of the magnetic material, measured in parts per million per degree Celsius (ppm/PC) on a toroidal core and winding. This is only an indication of the temperature stability for a complete wound assembly.



⁶⁾ The base is molded in Rynite. The base will position two tinned winding leads up to #24 AWG (.200 Dia.) for IR reflow surface mounting directly to the printed circuit board. The CF120 coliform is glass reinforced polyester tube with 8-32 internal threads. Coplanearity is not an issue due to three contact points.

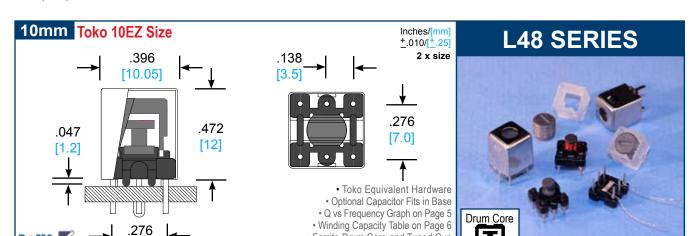
⁷⁾ The optional PB142 snap in bobbin is self threading polypropylene. To order, substitute "B" for "F" in the assembly part number.

⁸⁾ The tuning core is a 8-32 shallow thread coated with Teflon


Fax (714) 970-0800

ASSEMBLY PART NO.	COLOR CODE	MAGNETIC MATERIAL(1)	FREQUENCY RANGE(2)	MATERIAL PERMEABILITY	ASSEMBLY AL nH/turns ² (3)	MAX µh 100 turns	MIN µh (4) 100 turns	TEMPERATURE STABILITY(5)
L43-1-CT-F-5	BLUE	CARBONYL C	.15-2.0 MHz	20.0	11.5	115	54	280 ppm/°C
L43-2-CT-F-5	RED	CARBONYL E	.25-10 MHz	10.0	9.8	98	48	95 ppm/°C
L43-3-CT-F-5	GREY	CARBONYL HP	.02-1.0 MHz	35.0	13.3	133	60	370 ppm/°C
L43-6-CT-F-5	YELLOW	CARBONYL SF	2.0-50 MHz	8.5	8.5	85	44	35 ppm/°C
L43-10-CT-F-5	BLACK	CARBONYL W	10-100 MHz	6.0	7.2	72	43	150 ppm/°C
L43-17-CT-F-5	LAVENDER	CARBONYL	20-200 MHz	4.0	5.6	56	43	50 ppm/°C

- 1) The iron powder or ferrite materials are used in the tuning core and cup core.
- 2) This represents the frequency range for Q optimization in tuned or resonant circuits. The inductive properties of the material is effective over a considerably wider frequency range.
- 3) Nanohenries (10-9 Henries) per turn squared


- 4) The minimum inductance is measured in microhenries (10⁻⁶ Henries) per 100 turns with the tuning core tuned out of the winding area but still a part of the assembly.
- 5) The temperature stability is of the magnetic material, measured in parts per million per degree Celsius (ppm/OC) on a toroidal core and winding. This is only an indication of the temperature stability for a complete wound assembly.

- 6) The base is moulded from thermoset Diallyl Phthalate (DAP). The 5 terminals available are half hard copper, .025 inches in diameter, tin plated to MIL-STD 202 Method 208 for solderability.
- 7) The CF112 coil form is a glass reinforced polyester tube with 8-32 internal threads. The PB114 snap in bobbin is self threading nylon 6/6.
- 8) The tuning core is 8-32 shallow thread coated with Teflon.

SHIELDED COIL FORMS

PHOTO NOT TO SCALE

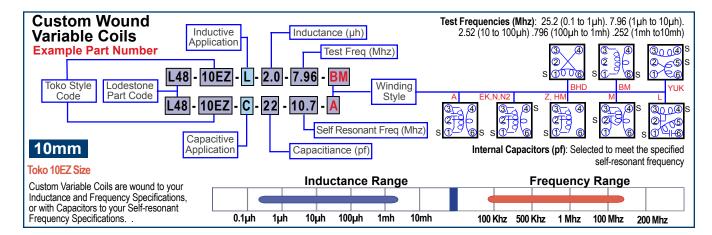
ASSEMBLY PART NO.	COLOR CODE	MAGNETIC Material(1)	FREQUENCY RANGE(2)	MATERIAL PERMEABILITY	ASSEMBLY AL nH/turns ² (3)	MAX µh 100 turns	MIN µh (4) 100 turns	TEMPERATURE STABILITY(5)
L48-51-BT-D-5	None	FERRITE 51	.05-2.0 MHz	300	83.2	832	340	1500 ppm/°C
L48-52-BT-D-5	None	FERRITE 52	2-150 MHz	60	33.7	337	173	1500 ppm/°C

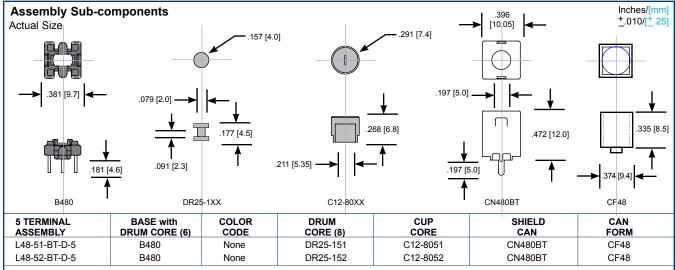
· Available as: Un-wound Hardware or Complete Wound Coils

Quality Inspection Level: MIL-STD-1916 Level IV

• Ferrite Drum Core and Tuned Cup

1) The ferrite materials are used in the drum core and cup core.

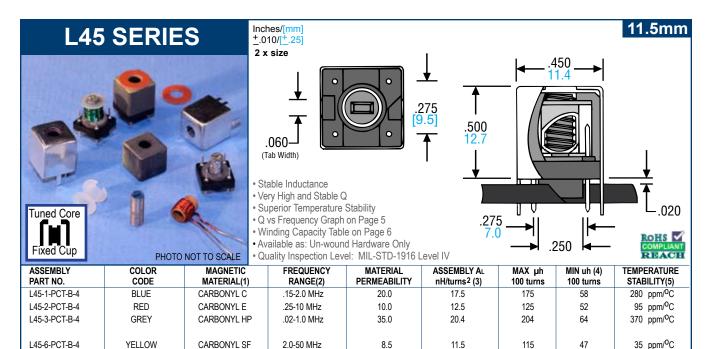

[7.0]


- 2) This represents the frequency range for Q optimization in tuned or resonant circuits. The inductive properties of the material is effective over a considerably wider frequency range.
- 3) Nanohenries (10⁻⁹ Henries) per turn squared.

4) The minimum inductance is measured in microhenries (10⁻⁶ Henries) per 100 turns with the tuning core tuned out of the winding area but still a part of the assembly.

Tuned Cup

5) The temperature stability is of the magnetic material, measured in parts per million per degree Celsius (ppm/OC) on a toroidal core and winding. This is only an indication of the temperature stability for a complete wound assembly


^{6) &}quot;The base is molded in a phenolic thermoset. The attached coilform is molded in polypropylene. The 5 terminals are brass, ".027 inches (0.7mm) in diameter, tin plated to meet MIL-STD 202 method 208 for

© 2013

ISSUE K

⁷⁾ The ferrite drum core is attached to the thermoset base. 8) Threaded cup matches the interal threads in the Cup Form 9) The base has a cavity for an optional capacitor .250 [6.3mm] Long x .086 [2.2mm] Wide x .130 [3.7mm] Deep. Capacitors are not included.

Fax (714) 970-0800

6.0

40

10

6.7

1) The iron powder or ferrite materials are used in a portion of the base, the tuning core and cup core. Mix 3F is a combination of a ferrite tuning core and an iron powder cup core.

CARBONYL W

CARBONYI

10-100 MHz

20-200 MHz

- 2) This represents the frequency range for Q optimization in tuned or resonant circuits. The inductive properties of the material is effective over a considerably wider frequency range.
- 3) Nanohenries (10⁻⁹ Henries) per turn squared.

BLACK

I AVENDER

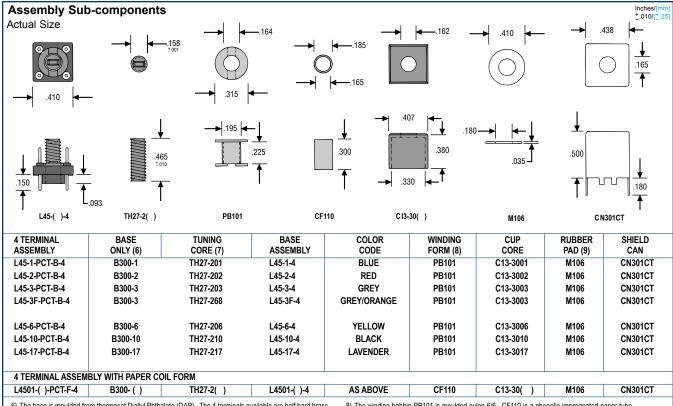
L45-10-PCT-B-4

I 45-17-PCT-B-4

4) The minimum inductance is measured in microhenries (10⁻⁶ Henries) per 100 turns with the tuning core tuned out of the winding area but still a part of the assembly.

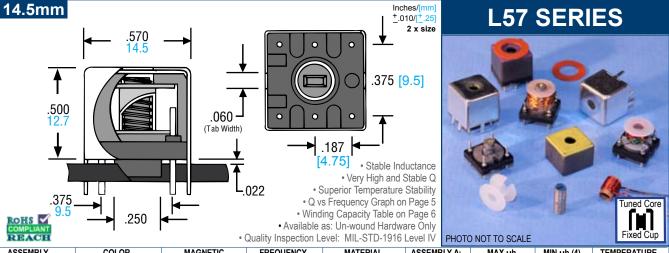
100

67


46

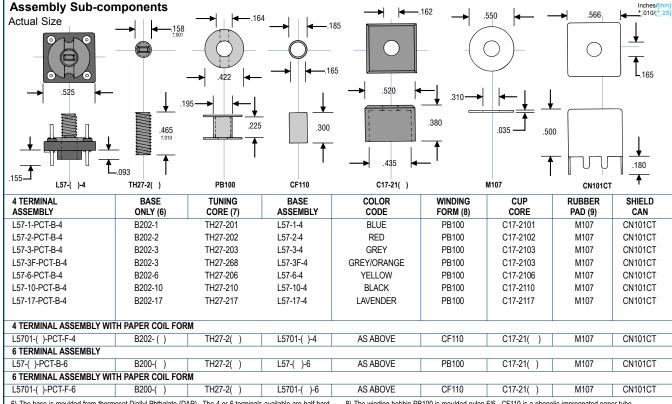
45

150 ppm/OC


50 ppm/OC

5) The temperature stability is of the magnetic material, measured in parts per million per degree Celsius (ppm/OC) on a toroidal core and winding. This is only an indication of the temperature stability for a complete wound assembly.

- 6) The base is moulded from thermoset Diallyl Phthalate (DAP). The 4 terminals available are half hard brass, .024 inches in diameter, tin plated to MIL-STD 202 Method 208 for solderability.
- 7) The tuning core is 8-40 shallow thread coated with Teflon.


- 8) The winding bobbin PB101 is moulded hylon 6/6. CF110 is a phenolic impregnated paper tube.
- 9) The anti-vibration silicon rubber pad M106 is optional. It will be excluded from assemblies when the "P" is excluded from the assembly number. (ie: L45-2-CT-B-4)

ASSEMBLY PART NO.	COLOR CODE	MAGNETIC Material (1)	FREQUENCY RANGE (2)	MATERIAL PERMEABILITY	ASSEMBLY AL nH/turns ² (3)	MAX µh 100 turns	MIN µh (4) 100 turns	TEMPERATURE STABILITY (5)
L57-1-PCT-B-4	BLUE	CARBONYL C	.15-2.0 Mhz	20.0	18.5	185	60	280 ppm/ ^o C
L57-2-PCT-B-4	RED	CARBONYL E	.25-10 Mhz	10.0	13.0	130	54	95 ppm/ ^O C
L57-3-PCT-B-4	GREY	CARBONYL HP	.02-1.0 Mhz	35.0	21.5	215	70	370 ppm/ ^O C
L57-6-PCT-B-4	YELLOW	CARBONYL SF	10-50 Mhz	8.5	12.0	120	51	35 ppm/ ^O C
L57-10-PCT-B-4	BLACK	CARBONYL W	10-100 Mhz	6.0	10.5	105	50	150 ppm/ ^O C
L57-17-PCT-B-4	LAVENDER	CARBONYL	20-200 Mhz	4.0	7.0	70	50	50 ppm/ ^O C

The iron powder or ferrite materials are used in a portion of the base, the tuning core and cup core. Mix 3F
is a combination of a ferrite tuning core and an iron powder cup core.

- 4) The minimum inductance is measured in microhenries (10⁶ Henries) per 100 turns with the tuning core tuned out of the winding area but still a part of the assembly.
- 5) The temperature stability is of the magnetic material, measured in parts per million per degree Celsius (ppm/°C) on a toroidal core and winding. This is only an indication of the temperature stability for a complete wound assembly.

⁶⁾ The base is moulded from thermoset Diallyl Phthalate (DAP). The 4 or 6 terminals available are half hard brass, .032 inches in diameter, tin plated to MIL-STD 202 Method 208 for solderability.

²⁾ This represents the frequency range for Q optimization in tuned or resonant circuits. The inductive properties of the material is effective over a considerably wider frequency range.

³⁾ Nanohenries (10⁻⁹ Henries) per turn squared.

⁷⁾ The tuning core is 8-40 shallow thread coated with Teflon.

⁸⁾ The winding bobbin PB100 is moulded nylon 6/6. CF110 is a phenolic impregnated paper tube.

⁹⁾ The anti-vibration silicon rubber pad M107 is optional. It will be excluded from assemblies when the "P" is excluded from the assembly number. (ie: L57-2-CT-B-4)

LODESTONE PACIFIC

QUALITY PRODUCTS FOR THE MAGNETICS INDUSTRY

Phone: (800) 694-8089 • www.lodestonepacific.com

TOROID MOUNTS COMPONENT HEADERS

China and USA Inventory
High Quality • Low Cost
China Molding Factory
Custom Mold Tooling

FERRITE CORES POWDER CORES

Micrometals Iron PowderCores
Low Price and Quick Delivery
Arnold Alloy Powder Cores
Fair-Rite Products Ferrites
Core Cross Reference

FERRITE BOBBINS LAMINATION BOBBINS

China and USA Inventory
High Quality • Low Cost
China Molding Factory
Custom Mold Tooling

TRANSFORMER TAPE P. Leo Tape Products

Insulation System Support
High Quality • Low Cost
Custom Tape Slitting
UL File No. E126174